Local viscoelasticity of living cells measured by rotational magnetic spectroscopy
نویسنده
چکیده
When submitted to a magnetic field, micron-size wires with superparamagnetic properties behave as embedded rheometers and represent interesting sensors for microrheology. Here we use rotational magnetic spectroscopy to measure the shear viscosity of the cytoplasm of living cells. We address the question of whether the cytoplasm is a viscoelastic liquid or an elastic gel. The main result of the study is the observation of a rotational instability between a synchronous and an asynchronous regime of rotation, found for murine fibroblasts and human cancer cells. For wires of susceptibility 3.6, the transition occurs in the range 0.01-1 rad s(-1). The determination of the shear viscosity (10-100 Pa s) and elastic modulus (5-20 Pa) confirms the viscoelastic character of the cytoplasm. In contrast to earlier studies, it is concluded that the interior of living cells can be described as a viscoelastic liquid, and not as an elastic gel.
منابع مشابه
Local viscoelastic properties of live cells investigated using dynamic and quasi-static atomic force microscopy methods.
The measurement of viscoelasticity of cells in physiological environments with high spatio-temporal resolution is a key goal in cell mechanobiology. Traditionally only the elastic properties have been measured from quasi-static force-distance curves using the atomic force microscope (AFM). Recently, dynamic AFM-based methods have been proposed to map the local in vitro viscoelastic properties o...
متن کاملBrain Viscoelasticity Measured by Magnetic Resonance Elastography
The knowledge of brain tissue mechanical properties is a critical issue in the head injury biomechanics research field. Due to experimental limitations, brain tissue has been characterized in vitro, whereas its actual in vivo behavior remains poorly known. We propose the use of Magnetic Resonance Elastography as a non invasive, non destructive tool for measuring the viscoelastic properties of b...
متن کاملMeasurement of local viscoelasticity and forces in living cells by magnetic tweezers.
We measured the viscoelastic properties of the cytoplasm of J774 macrophages with a recently developed microrheometer. Ferromagnetic beads (1.3 microm in diameter) were used to determine the local viscoelastic moduli. Step-force pulses were applied to the magnetic beads and the displacement was observed by single particle tracking. By analyzing the creep response curves in terms of a triphasic ...
متن کاملHIGH RESOLUTION LASER SPECTROSCOPY IN COLD SUPERSONIC MOLECULAR BEAMS COOLING, REDUCTION OF DOPPLER WIDTH AND APPLICATION
The cooling of molecules during the adiabatic expansion of supersonic seeded molecular beams is reviewed and illustrated by the example of NO -molecules. The reduction of the Doppler width by collimation of the beam and the cooling to low rotational temperatures brings a significant simplification of the complex NO -absorption spectrum and allows its assignment. The measured rotational tem...
متن کاملEffects of Surface Viscoelasticity on Cellular Responses of Endothelial Cells
Background: One area of nanoscience deals with nanoscopic interactions between nanostructured materials and biological systems. To elucidate the effects of the substrate surface morphology and viscoelasticity on cell proliferation, fractal analysis was performed on endothelial cells cultured on nanocomposite samples based on silicone rubber (SR) and various concentrations of organomodified nano...
متن کامل